Changes in Frequency of Spontaneous Oscillations in Procerebrum Correlate to Behavioural Choice in Terrestrial Snails

نویسندگان

  • Elena Samarova
  • Pavel Balaban
چکیده

The aim of our study was to understand functional significance of spontaneous oscillations of local field potential in the olfactory brain lobe of terrestrial snail, the procerebrum (PC). We compared changes in frequency of oscillations in semi-intact preparations from snails trained to percept the same conditioned odor as positive (associated with food reinforcement) or negative (associated with noxious reinforcement). In vivo recordings in freely behaving naïve snails showed a significant decrease of spontaneous PC oscillations frequency during a stage of tentacle withdrawal to odor presentation. In in vitro preparations from naïve snails, a similar decrease in frequency of the PC oscillations to odor presentation was observed. Changes in frequency of the oscillations to cineole presentations in the "aversive" group of snails (demonstrating withdrawal) were much more pronounced than in naïve snails. No significant difference in responses to 5% and 20% cineole was noted. Changes in the spontaneous oscillations frequency in the snails trained to respond with positive reaction (approach) to cineole depended on the concentration of the applied odor, and these responses were qualitatively similar to responses of other groups during the first 10 s of responses to odor, but significantly different (increase in PC oscillations frequency) from the responses of the aversively trained and naïve snails in the interval 11-30 s, which corresponds to the end of the tentacle withdrawal and timing of decision making (approach or escape) in the free behaving snails. Obtained results suggest that frequency of the PC lobe spontaneous oscillations correlate to the choice of behavior in snails: withdrawal (decrease in frequency) or approach (increase in frequency) to the source of odor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical recording of odor-evoked responses in the olfactory brain of the naïve and aversively trained terrestrial snails.

Regular spontaneous oscillations were recorded both electro- and optophysiologically using a voltage-sensitive absorption dye in the olfactory part of the brain (procerebral lobe of the cerebral ganglia) of the gastropod mollusk Helix lucorum. Odor application caused transient changes in procerebral oscillations, and an odor-evoked potential was recorded in the procerebrum (PC). The wave of evo...

متن کامل

Image analysis of olfactory responses in the procerebrum of the terrestrial slug Limax marginatus.

Neural oscillations have been found to occur in the olfactory centers of some vertebrates and invertebrates, including the procerebrum of the terrestrial slug Limax marginatus. Using optical recording with the potential-sensitive dye di-4-ANEPPS, we analyzed the spatiotemporal pattern of procerebral neural activities in response to odorants applied to an in vitro brain-superior tentacle prepara...

متن کامل

Morphology of interneurons in the procerebrum of the snail Helix aspersa.

Terrestrial snails have a highly developed sense of olfaction. Because the procerebrum has a large number of cells and is located at the entry site of the olfactory nerve into the brain, the structure is thought to have a significant role in the processing of olfactory stimuli. The morphology of the procerebral neurons in the snail Helix aspersa was investigated through intracellular injections...

متن کامل

Spontaneous Recovery of the Injured Higher Olfactory Center in the Terrestrial Slug Limax

BACKGROUND Of all organs and tissues in adult mammals, the brain shows the most limited regeneration and recovery after injury. This is one reason why treating neurological damage such as ischemic injury after stroke presents such a challenge. Here we report a novel mode of regeneration which the slug's cognitive center, the procerebrum, shows after surgical lesioning in the adult. It is well k...

متن کامل

Acoustic-Mean Flow Interaction in Solid Propellant Rocket Motors

There are several sources for pressure oscillations in solid propellant rocket motors. Oscillatory flow field is one of them. Free shear layers in motor flow field cause vortex shedding. End edges of propellant grains and baffle edge in two-segmented motors are samples of such zones. These vortices move from their forming points and strike the field walls. The kinetic energy of vortices change ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2009